

FACT SHEET BIP

Alama tanka ita	Wards Hat with a Catalana and
Name institution	Wrocław University of Science and
	Technology, Poland (on-site location)
	in a cooperation with
	 Haute Ecole Louvain en Hainaut,
	Belgium
	 Polytechnic University of Coimbra,
	Portugal
	 Portalegre Polytechnic University,
	Portugal
Title / Name BIP:	Embedded systems: ROS in embedded
(Enter the official name of the BIP)	design for mobile robots
Abstract:	This BIP provides students with practical
(Brief summary of the activity – what it is	learning experience focused on the design
about in 3–5 lines)	and implementation of embedded systems
about in 3–3 linesy	for mobile robotics. Participants will learn
	how to design embedded components
	intended for integration with the ROS 2
	(Robot Operating System) ecosystem and
	gain hands-on experience in programming
	microcontrollers and integrating hardware
	components in robotic applications through
	a project of a localization application.
Goal:	The BIP will provide the students
(What is the main objective or purpose?)	knowledge and practical experience in the
	process of development of ROS-compatible
	embedded components for mobile robots.
Topics covered:	Introduction to ROS 2 and micro-ROS.
(List the key themes or subject areas that	Simulation tools for ROS-based robots.
will be addressed)	Control of mobile robots.
,	Sensors and algorithms for mobile robot
	localization.
	Embedded systems programming.
Expected outcome(s):	Participants will:
(What should students gain or achieve by	- Design and implement ROS-compatible
the end?)	embedded system integrating radio-based
ine char,	localization and mobile robot control
	- Apply simulation tools to develop and test
	algorithms before deployment
	- Develop skills of problem-solving,
	teamwork and communication in
	international groups.
Start and and data of the DID	
Start and end date of the BIP	16-20.02.2026

Content of virtual component: (Describe any online or hybrid elements – e.g., webinars, online modules, collaborative tools)	Virtual component will consist of webinars introducing the topics of the course - Fundamentals of ROS 2, - Simulation as a tool for system development, - Localization techniques, and a set of preparatory exercises to be completed by the students before the onsite component.
Start and end date of the virtual component	26.01-8.02.2026
Maximum number of students: (Total number of participants allowed)	30
Maximum number per university: (Limit per institution, if applicable)	6
BIP ID (If already available)	